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Abstract

This study explores the effects of Calorie labeling laws implemented in some counties
in the United States on several health related variables. The findings show a small
significant decreasing effect of the law on Limited activity and Poor health of 0.083
and 0.047 at 95% significant level respectively.
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1 Introduction

The state of obesity in the United States, September 2015, reports that adult obesity exceeds

35 percent in Arkansas, West Virginia and Mississippi; 22 states have rates above 30 percent,

45 states are above 25 percent and every state is above 20 percent (Levi et al, 2015).

Obesity is related to medical conditions such as stroke; vascular disease, several types

of cancer, cardiovascular disease, and diabetes, which imposes externalities such as lower

probability of employment, lower wages, and higher medical care costs (Sturm, 2002). Cawley

and Meyerhoefer, 2012, finds that estimates of the obesity impact are underestimated, which

negatively impacts the government intervention to reduce obesity externalities.

Economic research on obesity is extensive and covers topics such as economic causes,

measurements, medical consequences and costs among others. Overall, the evidence sug-

gests that there is no single economic cause of obesity, but instead there are a variety of

contributors to the problem and the current interventions have only modest effects thus a

range of policies may be required to achieve a substantial positive effect on the prevalence

of obesity (Cawley, 2015).

Deb and Vargas, 2016 studied the effect of calorie labeling laws on BMI in the United

States using a Behavioral Risk Factor Surveillance System (BRFSS) dataset comprised by the

2003 to 2012 survey waves. States that implemented the law were identified as treated and

neighboring states and counties were used as controls in the study. The analysis was carried

out at a county level using a difference in difference regression model. Deb and Vargas found

statistically significant decreasing estimated effects of the law on BMI on overweight women

as well as significant decreasing estimated effects on normal, overweight and obese males,

with the largest effects on overweight and obese males. The importance of the study lies

in that by acknowledging the heterogeneity of effects Deb and Vargas were able to identify

effects that several studies have failed to identify and opened new possibilities at a policy

level calling for stratified interventions that will fulfill subpopulation needs for information

on food caloric and nutritional contents. In this study, I am examining the effects of the

calorie labeling law on Health status, Exercise, Limited activity, Days of illness and Poor

health trying to understand the mechanisms through which the law has an effect on the
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overweight and obese population (Deb and Vargas, 2016) and also to understand whether

there are broader impacts of the law on health.

2 Previous literature

Several studies have been made on the effect of calorie labeling laws on menus and menu

boards. Bassett et al, 2008 studied the purchasing behavior and calorie information at 11

fast-food chains in New York and found that consumers purchase lower amount of calories

in the presence of caloric information.

Harnack et al, 2008 conducted a randomized experiment were participants ordered a

food meal from one of four menus that vary in regards to whether calorie information was

provided and value price sizing was used. The study included adolescents and adults habitual

fast food patrons. Researchers recorded foods ordered and consumption of participants. No

significant differences in energy consumption were found among meals ordered or eaten.

Chu et al, 2009 examined changes in meal selection by patrons in presence of nutrition

labels and concluded that the presence of labels reduced the average energy content of

purchases without reducing the overall sales.

Kuo et al, 2009 in Los Angeles, California conducted a sensitivity analysis to account for

uncertainty in consumer response and in total annual revenue, market share, and average

meal price of large chain restaurants. Researchers estimated that 10% of consumers would

lower caloric consumption due to the law postings, and as a result, they estimated an average

annual reduction of 40.6% of the 6.75 million pound average gain in the county population

aged 5 or more. Their findings suggest that the mandate could have a large impact on the

state of obesity.

Elbel et al, 2009 examined the effect of the law in New York City. The study collected

receipts and surveyed consumers before and after the law was implemented at food chains

located in low-income areas. Calories purchased were matched to the nutritional value of

items purchased. A difference in difference model indicated that the NYC menu labeling

law had no effect on consumers. Newark fast food restaurants were used as controls. Elbel

et al, 2011 studied the effect of the law on purchases on children and adolescents in New

York City‘s fast food restaurants located at low income areas and found that they observed
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calorie information at similar rates as adults, but they were less responsive to the information.

Vadiveloo et al, 2011 used the same dataset and a difference in difference design to survey

adults in chain restaurants before and after the implementation of the law and found no

difference in purchasing as a result of labeling.

Roberto et al, 2010 studied the effect of the law on food choices and intake. The re-

searchers randomly assigned three different menus to study subjects. First menu had no

calorie information; second menu informed calorie contents; and third menu informed of

calorie contents and daily caloric requirement. Researchers found that additional informa-

tion is beneficial as individuals consumed 14% less calories when given more information.

Dumanovsky et al, 2010 studied the effect of the law in New York City collecting in-

formation before and after the implementation of the law. Consumers were surveyed at

45 randomly selected fast food restaurants. Researchers found no evidence of lower caloric

purchase. Increase in customer awareness of the law was found.

Bollinger et al, 2011 estimated the impact of the law in New York City using data from

Starbucks purchases in three cities. Researchers used a difference in difference strategy and

found that menu labels reduced average calories per transaction by 6%. The law reduced

average calories from food consumed and had no impact on beverage purchases. Loyal

Starbuck cardholder customers reduced their consumption per transaction by 26%. The

cities of Boston and Philadelphia were used as controls.

Dumanovsky et al, 2011 assessed the impact of calorie labeling on fast food restaurants on

individual purchases based on consumer register receipts and found no decline on purchasing

of calories on the full sample.

Finkelstein et al, 2011 studied the impact of calorie labeling law on transactions and

purchasing behavior at one Mexican fast food chain located within and adjacent to King

county, Washington. They found no impact of the law on healthier food purchasing.

Swartz et al, 2011 reviewed 7 studies on the effect of calorie labeling from 2006 to 2011

and found that all of them compared calorie ordering and purchasing in two conditions:

calorie label versus no calorie label. Only two of the seven studies reported statistically

significant reduction in calories purchased. Two of the seven studies were judged to be of

good quality and five of fair quality. The evidence suggests that calorie labeling does not
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have the intended effect on consumer purchasing.

On food label determinants, Stran and Knol, 2013 used a multiple linear regression design

to analyze a sample of adults from the 2005-2006 National Health and Nutrition Examination

Survey (NHANES) and targeted food label use determinants. The findings indicated that

determinants of food label are differential by sex, race, and age.

On searching for most effective ways of presenting menu labels to the general public,

Platkin et al, 2014 studied the effect of menu labeling with calories and exercise equivalents

on food selection and consumption. They found no significant difference between the infor-

mation and control groups and suggested that finding more effective ways of presenting the

menu labels is needed to improve the effects of the law.

A working paper by Restrepo, 2014 examined the effects of calorie labeling in a number

of New York counties between 2008 and 2010. Restrepo used a difference-in-difference design

and data from the 2004 to 2012 waves of BRFSS to examine the effects of calorie labeling

on body mass index (BMI). He found robust evidence of significant decreases in BMI due

to calorie labeling. He estimated quantile regressions to show that there is heterogeneity in

the effects of calorie labeling and the effects are generally larger in the upper quantiles of

the BMI distribution.

Deb and Vargas, 2016 studied the effects of the calorie labeling law in the United States

using a difference in difference design and data from the 2003 to 2012 waves of BRFSS. Deb

and Vargas used finite mixture models to identify the heterogeneity of effects and characterize

the heterogeneity along the dimensions of the outcome distribution. They identified three

latent classes which matched the normal, overweight and obese groups and found significant

estimated effects on the overweight classes of men and women. The effects were males

significant for the three classes and larger for overweight and obese.
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3 Data

The dataset includes the Behavioral Risk Factor Surveillance System (BRFSS) waves of

2003-2012. BRFSS is a yearly telephone survey that collects health related data from every

state in the United States (U.S.), including risk behaviors, chronic health conditions and

use of preventive services. BRFSS collects data from adults in all 50 states, the district

of Columbia and three U.S. territories and it is mainly sponsored by most divisions in the

National for Chronic Disease Prevention and Health Promotion (CDC) and other federal

agencies. The survey contains self-reported information on demographic and health related

information, which is used in the analysis. Preliminary exploration of the data suggested

substantial gender heterogeneity, so the analysis was carried out by gender throughout. The

dataset is restricted to individuals whose BMI is larger than 24.9 (overweight and obese),

and age is within 21 to 75 years old. Because BRFSS has some extremely small and large

weights, individuals with the smallest and largest quarter percent of sampling weights were

also dropped to avoid complications after the entropy balance reweighing.

The BRFSS dataset is merged with Information from the Area Resource File (ARF)

to classify each county by population, income and year. Counties with more than 20,000

individuals are considered urban; small metropolitan areas (population less than 250,000);

metropolitan areas (population between 250,000 and 1,000,000) and large metropolitan areas

with population larger than a million individuals. Median household income in each county

is also included in the dataset. From the County Business Patterns (CBP), data about the

number of employees in limited service restaurants (LSR) is obtained to use as a proxy for

the size of the LSR sector. This data reports the number of employees in limited service

restaurants per 1,000 population in each county.

County-specific information on legislation and implementation of calorie labeling laws was

cross-referenced from the National Conference of State Legislature, the Center for Science in

the Public Interest and MenuCalc, an online nutrition analysis platform for the food industry

endorsed by the National Restaurant Association.

Table 1 shows a chronological list of states and counties that implemented the menu

labeling laws and the states included in the control group of the study. Neighboring counties
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and states were selected for the control group throughout the period of study. Figures 1

and 2 depict the geography of the counties and states included in the study and shades of

blue indicate the year of implementation with lighter shades for 2008 and increasing shades

of blue for later years of implementation. Control states and counties are simply outlined in

black. The figures show a concentration of the laws in the Eastern and Western regions of

the United States.

The key variable of the analysis is an indicator variable labeled “County has law enforced”

that takes a value of “one” if the county has implemented the menu calorie labeling law in

the month and year of the interview and “zero” otherwise. The variable “County has law”

takes the value of “one” if the county ever has the law and “zero” otherwise. In addition,

there are dummy variables for every state, and every year included in the study, as well as

a county indicator variable.

Five dependent (outcome) variables are selected from the dataset and used in the analysis

with the aim of exploring the effect of the menu calorie labeling laws on each one of them.

The analysis is carried out by gender, clustered by individual county and using the balanced

weights. The dependent variables are labeled as follows: 1. Health status corresponds to

the question: Would you say that in general your health is: Excellent, very good, good,

fair, and poor. Each category takes a numerical value from 1 to 5 respectively. 2. A

variable labeled Exercise corresponds to the question: During the past month, other than

your regular job, did you participate in any physical activities or exercises such as running,

calisthenics, golf, gardening, or walking for exercise? The variable takes a value of ”one” if

the participant answers “yes” and “zero” otherwise. 3. A variable labeled Limited activity

corresponds to the question: Are you limited in any way in any activities because of physical,

mental, or emotional problems? The variable takes a value of “one” if the individual gives an

affirmative answer and “zero” otherwise. 4. A variable labeled Days of illness corresponds

to the question: Now thinking about your physical health, which includes physical illness

and injury, for how many days during the past 30 days was your physical health not good?

This variable takes a value from “one” to “thirty”. 5. Lastly, a variable labeled Poor health

corresponds to the question: During the past 30 days, for about how many days did poor

physical or mental health keep you from doing your usual activities such as self-care, work,
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or recreation? This variable takes a value from “one” to “thirty”.

4 Methods

4.1 Entropy balance weights

Entropy balance has been proposed as a preprocessing technique to achieve covariate bal-

ance in observational studies with a binary treatment. Weighting / reweighing the sample

such that the covariate distribution of the control group becomes more similar to the co-

variate distribution in the treatment group to achieve balance between treated and control

observations, (Abadie and Imbens, 2011). In this study, I include the mean value of the

outcome for each pre-treatment year of data by county and gender in the set of covariates

used in the entropy balancing algorithm. Thus, following the principles of synthetic control

groups proposed by Abadie and Gardeazabal, 2003 and Abadie et al, 2010, not only are the

treated and control samples balanced on covariates, they are also balanced on the values of

the county-level average outcome in each year of the pre-treatment period.

I use a method for generating weights to create balance: Entropy balancing. The method,

developed by Hainmueller, 2011, produces a set of observation-level weights that directly

balances covariate distributions across treated and control groups. Inverse propensity score

weighting is the popular method for this purpose (Ho et al, 2007) but the entropy balance

method has a number of practical advantages. First, it eliminates the need to back and forth

between propensity score specification, estimation and balance checking. Second, propensity

score weights can lead to worse balance on some covariate dimensions while improving bal-

ance on others (Iacus et al, 2011). Third, while the weights are adjusted as far as is needed

to accommodate the balance constraints, at the same time they are kept as close as possible

to the base weights to retain information in the reweighed data, so extreme weights are much

less likely.

In the propensity score weighting method, every treated unit gets a weight di = 1 and

every control unit gets a weight equal to di = p̂(xi)
1−p̂(xi)

where p̂(xi) is the estimated propensity

score. In the entropy balancing method, each treated unit gets either a weight wi = 1

or wi = si, where si is the sampling weight associated with the treated observations, and
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every control unit gets a weight that satisfies a set of a priori specified balance constraints.

Specifically, wi for the control units are chosen by the solution to

min
wi

H(w) =
∑
i|D=0

wi log(wi/si) (1)

subject to ∑
i|D=0

wicri(xi) = kr with r ∈ 1, ..., R

∑
i|D=0

wi = 1

wi ≥ 0 for all i such that D = 0

where cri(Xi) = mr describes a set of R balance constraints imposed on the covariate

moments of the reweighed control group. Each balance constraint equates the weighted

mean of the covariate in the treated sample to the weighted mean of the covariate in the

control sample. In the case of indicator variables, which comprise most of the covariates in

the study, equality of means is equivalent to equality of distributions. I conduct entropy

balance for each gender and year of data separately, so covariate balance is obtained within

each gender-year subsample.

I apply the entropy balance algorithm iteratively. In the first application of the algorithm,

I set the weights for the treated group to their sampling weights and have one balance

constraint for each covariate used in the regression analysis. The second application of the

entropy balance algorithm adds county-mean of Health Status (in addition to the regression

covariates) into the set of balance constraints. This generates a new set of balance-weights,

which I use to recalculate county-level mean Health Status for the pre-treatment years. The

third application of the entropy balance algorithm uses, once again, balances constraints for

covariates and county-level mean. The balance algorithm is applied again adding county-

means of Exercise, Limited activity, Days of illness, Poor health consecutively. The revised

balance weights have a correlation of 0.99 with the weights from the prior iteration, so I

consider the process to have converged to a stable set of balance weights.
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4.2 Logistic regression

The case when the outcome is a discrete variable or a binary variable that has a value of 1

if the event is true and zero otherwise, such as whether a person was cured after receiving

a treatment, or whether the person is employed or unemployed, and some independent

variables that may or may not be continuous. The outcome could also be an ordered outcome

which has more than two categories and they are assumed to have a logical order. For

instance, a customer satisfaction survey may ask how satisfied you are with your purchase.

The options for answering the question might be ”great satisfaction”, ”average satisfaction”,

”poor satisfaction”. This options may be represented by an integer that conveys the ordered

value of the answers. Finally, the outcome could be a count variable that counts the number

of times something has happened, such as the number of times in a month the patient

went to the emergency room. In all these cases, I am going to use a model that fits the

individual characteristics to the dependent variable of interest (Long et al, 2014). The linear

regression model does not fit this set of data, and therefore I need to find a different solution.

I have a binary dependent variable Y , and I want to model the conditional probability

Pr(Y = 1|X = x) as a function of x; and any unknown parameters in the function are to

be estimated by maximum likelihood. In a binary response model, interest lies primarily in

the response probability

P (y = 1|x) = P (y = 1|x1, x2, ..., xi), (2)

where x denotes the full set of explanatory variables, for example in this study one of the

dependent variables is exercise and some of the independent variables are education, race,

income, and marital status.

Consider a class of binary response models of the form

P (y = 1|x) = G(β0 + β1x1 + ...+ βkxk) = G(β0 + xβ), (3)

where G is a function taking values strictly between zero and one: 0 < G(z) < 1, for all real

numbers z. This assures that the estimated response probabilities are strictly between zero

and one.

xβ = β1x1 + ...+ βkxk (4)
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In the logit model, G is the logistic function:

G(z) = exp (z)/[1 + exp (z)] = A(z), (5)

which is between zero and one for all real numbers z. This is the cumulative distribution

function for a standard logistic random variable.

The logit model can be derived from an underlying latent variable model. Let y∗ be an

unobserved, or latent variable determined by

y∗ = β0 + xβ + e, y = 1[y∗ > 0], (6)

where the notation 1[.] defines a binary outcome. The function 1[.] is called the indicator

function, which takes the value of one if the event in brackets is true, and zero otherwise.

Therefore, y is one if y∗ > 0, and y is zero if y∗ ≤ 0. I assume that e is independent from x

and that e has the standard logistic distribution. In addition, e is symmetrically distributed

about zero, which means that 1−G(−z) = G(z) for all real numbers z.

Assume that I have a random sample of size n. To obtain the maximum likelihood

estimator, conditional on the explanatory variables, I need the density of yi, given xi.

f(y|xi; β) = [G(xiβ)y[1−G(xiβ)]1−y, y = 0, 1, (7)

The log-likelihood for an observation i is a function of the parameters and the data (xi, yi)

and is obtained by taking :

li(β) = yi log[G(xiβ)] + (1− yi)log[1−G(xiβ)]. (8)

The log-likelihood for a sample size of n is obtained by summing equation 11 across all

observations :

Li(β) =
n∑

i=1

li(β). (9)

The MLE of β denoted by β̂ maximizes this log-likelihood. If G[.] is the standard logit cdf,

then β̂ is the logit estimator.
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The general theory of MLE for random samples implies that, under general conditions the

MLE is consistent, asymptotically normal, and asymptotically efficient. Each β̂j comes with

an (asymptotic) standard error, which are reported along with the estimated coefficients by

any statistical package(Wooldridge, 2009), (Archer and Lemeshow, 2006).

4.3 Poisson regression model

Another kind of nonnegative dependent variable is a count variable, which can take on

integer non-negative values. I am interested in the case where y takes on relatively few

values including zero. In my study, I consider a variable that takes values from one to thirty

responding to the question how many days of illness the participant had in a month. A

linear model can not provide the best fit for this type of explanatory variables because the

distribution of this data can be very different from normal. Instead, the nominal distribution

for count data is Poisson distribution.

Because I am interested in the effect of explanatory variables on y, then I look at the

Poisson distribution conditional on x. This distribution is entirely determined by the mean,

so I only need to specify E(y|x). I assume that this has the form

E(y|(x1, x2, ...+ xk) = exp (β0 + β1x1 + ...+ βkxk) (10)

which is also exp(xβ). So, the probability that y equals the value h, conditional on x, is

P (y = h|x) = exp[− exp(xβ)][exp(xβ)]h/h!, h = 0, 1, ... (11)

where h! denotes factorial. This distribution allows us to find conditional probabilities for

any values of the explanatory variables. Once I have estimates of of the βj, I can plug them

into the probabilities for various values of x.

Given a random sample [(xi, yi) : i = 1, 2, ..., n], I can construct the log-likelihood func-

tion:

L(β) =
n∑

i=1

li(β) =
n∑

i=1

[yixiβ − exp (xiβ)], (12)
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Then, I maximize the likelihood function and obtain the β̂j estimates and the standard

errors. These are reported by any statistical package.

Poisson is a natural step for a count data but it is often too restrictive because all the

probabilities and higher moments are determined entirely by the mean. In particular, the

variance is equal to the mean:

V ar(y|x) = E(y|x) (13)

Fortunately, the Poisson distribution has a very nice robustness property: whether or not

the Poisson distribution holds, I still get consistent, asymptotically normal estimators of the

βj. (Wooldridge, 2009). This is analogous to the OLS estimator, which is consistent and

asymptotically normal whether or not the normality assumption holds; yet OLS is the MLE

under normality.

5 Results

Summary statistics are displayed in tables 2 and 3 and are stratified by gender and law

status. Means are calculated using survey weights, and balanced weights obtained after

using the entropy balancing algorithm by year, by gender, and by each one of the dependent

variables. The total sample has 627,346 individuals and is composed by 332,857 females

and 294,489 males. Females in counties with the law are 111,383 and the remaining 221,857

are located in counties without the law. There are 97,283 males in counties with the law

and 197,206 in counties without the law. The sample summary statistics, calculated using

survey weights, show that individuals in counties with the law are more likely to be of other

minority, Hispanic race, unmarried, less than high school educated, and low income. After

using the entropy balance weights then the covariate distribution is adjusted to minimize

the difference between the treated and untreated covariate groups, allowing me to interpret

the regression estimates as being “doubly robust”.

Tables 4 and 5 depict the dependent variables that are used in the regressions. The

means are stratified by gender and law status. Means are calculated using survey weights

and entropy balanced weights respectively.

I carried out an ordered logit regression on variable Health Status stratified by gender and
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clustered by county. The output shows no significant effect of the menu calorie labeling law.

Likewise, a logit regression on variable Exercise by gender and clustered by county shows no

significant effect of the calorie labeling law. Table 6 shows the estimated coefficients.

A logit regression on variable Limited Activity stratified by gender and clustered by

county shows a significant decreasing effect of the law in the amount of 0.083 at 95% signifi-

cance level on women. Other coefficients are significant and have the expected sign, such as

age, black race, Hispanic ethnicity, married, some college, and income. There is no effect of

the law on men. See the estimated coefficients on table 7.

A Poisson regression on Poor Health depicts a significant small decreasing effect of the

law in the amount of 0.047 at 95% significant level on women. No effect of the law is found

on men. Other coefficients such as age, other minority, education and income are significant

and show the expected signs. See the estimated coefficients on table 7.

Lastly, a Poisson regression stratified by gender and clustered by county on Days of Illness

also finds no signifficant effect of the law for neither men nor women.

6 Conclusion

Physical activity and inactivity rates vary across states and regions of the US, as reported

by the CDC 1. Americans in the Southern states are less likely to be physically active as

compared to Americans in the West, Northeast and Midwest regions of the country. Some

groups are also more physically active than others. For example, Men (54%) are more likely

than women (46%) to meet the 2008 Physical Activity Guideline for aerobic activity.

Research evidence also indicates that adults with more education are more likely to meet

the required levels of physical activity recommended for healthy living, as well as, adults

whose income is above the poverty level are more likely to meet healthier levels of physical

activity and consequently, improve their health self-perception.

In this study, I wanted to examine the effects of the calorie labeling law on self-reported

Health status, Exercise, Limited Activity, Days of Illness, and Poor Health in order to

understand the mechanisms through which the law has an effect on the overweight and

obese males and females. I find a very small significant decreasing effect of the law on

1http://www.cdc.gov/physicalactivity/data/facts.htm
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the self-reported Limited physical activity and Poor health variables, which capture a small

improvement in the individuals well being that could be attributed to the menu calorie

labeling law. The non continuous variables used in the study are not appropriate to quantify

the causal effect of the calorie labeling law, and the expectation for the near future is to

have the law implemented in a larger number of counties and states as mandated by the

Affordable Care Act; and along with it, have surveys introduce variables tailored to capture

people’s eating habits changes and persistent health improvements.
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Tables

Table 1: Sample geography by calorie-labeling law status and dates

Date State County

8/2008 New York Queens

8/2008 New York Kings

8/2008 New York Richmond

8/2008 New York Bronx

8/2008 New York New York City

6/2009 New York Westchester

11/2009 New York Ulster

7/2009 California Statewide

1/2009 Washington King

8/2009 Oregon Multnomah

4/2010 New York Albany

10/2010 New York Schenectady

11/2010 New York Suffolk

2/2010 Pennsylvania Philadelphia

5/2010 Maine Statewide

11/2010 Massachusetts Statewide

1/2011 Oregon Statewide

The following states with no calorie-labeling laws

through 2012 are included in the control group:

Connecticut, Delaware, New Hampshire, Maryland,

New Jersey, Rhode Island, Vermont,

Arizona, Idaho, Nevada.
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Table 2: Covariate means using sampling weights

Women Men

No law Law No law Law

County has law enforced 0.109 0.385 0.107 0.386

Age / 10 4.795 4.678 4.681 4.611

Age (/10) squared 2.206 2.261 2.161 2.159

Black race 0.049 0.052 0.034 0.031

Other minority 0.022 0.031 0.026 0.036

Hispanic ethnicity 0.042 0.130 0.039 0.097

Married 0.594 0.544 0.683 0.645

Less than High School 0.089 0.175 0.076 0.137

High school graduate 0.305 0.244 0.285 0.229

Some college 0.300 0.284 0.260 0.255

Income < $15,000 0.082 0.166 0.048 0.094

Income $15,000 - $25,000 0.143 0.154 0.101 0.121

Income $25,000 - $35,000 0.103 0.102 0.085 0.088

Income $35,000 - $50,000 0.143 0.124 0.135 0.121

Income $50,000 - $75,000 0.163 0.142 0.175 0.150

Income unknown 0.110 0.075 0.085 0.058

Pregnant 0.018 0.019

Metro county pop. 250K-1M 0.237 0.184 0.240 0.186

Metro county pop. < 250K 0.090 0.046 0.087 0.049

Urban county pop. > 20K 0.072 0.022 0.069 0.023

County median HH income ($10K) 5.636 5.506 5.705 5.658

County LSR employees per 1000 pop. 9.310 9.630 9.272 9.684

N 221,474 111,383 197,206 97,283

Means calculated using sampling weights
Year and state coefficients are not displayed in the table
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Table 3: Covariate balanced means using balanced weights

Women Men

No law Law No law Law

County has law enforced 0.100 0.385 0.100 0.386

Age / 10 4.678 4.678 4.611 4.611

Age (/10) squared 2.261 2.261 2.159 2.159

Black race 0.052 0.052 0.031 0.031

Other minority 0.031 0.031 0.036 0.036

Hispanic ethnicity 0.130 0.130 0.097 0.097

Married 0.544 0.544 0.645 0.645

Less than High School 0.175 0.175 0.137 0.137

High school graduate 0.244 0.244 0.229 0.229

Some college 0.284 0.284 0.255 0.255

Income < $15,000 0.166 0.166 0.094 0.094

Income $15,000 - $25,000 0.154 0.154 0.121 0.121

Income $25,000 - $35,000 0.102 0.102 0.088 0.088

Income $35,000 - $50,000 0.124 0.124 0.121 0.121

Income $50,000 - $75,000 0.142 0.142 0.150 0.150

Income unknown 0.075 0.075 0.058 0.058

Pregnant 0.019 0.019

Metro county pop. 250K-1M 0.184 0.184 0.186 0.186

Metro county pop. < 250K 0.046 0.046 0.049 0.049

Urban county pop. > 20K 0.022 0.022 0.023 0.023

County median HH income ($10K) 5.506 5.506 5.658 5.658

County LSR employees per 1000 pop. 9.630 9.630 9.684 9.684

N 221,474 111,383 197,206 97,283

Means calculated using entropy balanced weights
Year and state coefficients are not displayed in the table
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Table 4: Dependent variables means using sampling weights

Women Men

No law Law No law Law

Health status 2.570 2.674 2.425 2.466

Exercise 0.721 0.719 0.788 0.788

Limited activity 0.242 0.235 0.190 0.188

Days of illness 10.482 10.690 9.788 9.912

Poor Health 10.622 10.445 10.590 10.387

Means calculated using sampling weights

Table 5: Dependent variables balanced means using balanced weights

Women Men

No law Law No law Law

Health status 2.676 2.674 2.491 2.466

Exercise 0.694 0.719 0.771 0.788

Limited activity 0.250 0.235 0.196 0.188

Days of illness 11.191 10.690 10.310 9.912

Poor Health 11.410 10.445 11.224 10.387

Means calculated using entropy balanced weights
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Table 6: Regressions on variables Health status and Exercise

1Health Status 2Exercise
Women Men Women Men

County has law enforced 0.026 0.015 -0.014 0.018
(0.023) (0.025) (0.030) (0.038)

County has law 0.126*** -0.004 -0.022 -0.038
(0.031) (0.023) (0.049) (0.045)

Age / 10 0.140*** 0.207*** -0.079*** -0.091***
(0.008) (0.006) (0.008) (0.009)

Age (/10) squared -0.058*** -0.026*** 0.027*** 0.052***
(0.005) (0.003) (0.005) (0.005)

Black race 0.173*** 0.077 -0.094* -0.132**
(0.027) (0.051) (0.055) (0.055)

Other minority 0.314*** 0.147*** -0.285*** -0.246***
(0.060) (0.053) (0.071) (0.064)

Hispanic ethnicity 0.384*** 0.282*** -0.390*** -0.468***
(0.045) (0.042) (0.045) (0.039)

Married -0.110*** -0.053*** 0.083*** -0.003
(0.015) (0.014) (0.027) (0.024)

Less than High School 1.088*** 1.047*** -0.793*** -0.929***
(0.031) (0.033) (0.036) (0.046)

High school graduate 0.428*** 0.533*** -0.562*** -0.669***
(0.017) (0.020) (0.028) (0.033)

SomeCollege 0.263*** 0.372*** -0.265*** -0.394***
(0.016) (0.016) (0.025) (0.030)

Income < 15, 000 1.540*** 1.629*** -0.718*** -1.060***
(0.029) (0.038) (0.047) (0.039)

Income 15, 000− 25, 000 1.073*** 1.159*** -0.640*** -0.895***
(0.026) (0.028) (0.035) (0.028)

Income 25, 000− 35, 000 0.756*** 0.765*** -0.459*** -0.699***
(0.028) (0.037) (0.036) (0.032)

Income 35, 000− 50, 000 0.508*** 0.531*** -0.330*** -0.574***
(0.021) (0.027) (0.028) (0.030)

Income 50, 000− 75, 000 0.286*** 0.302*** -0.181*** -0.382***
(0.021) (0.019) (0.030) (0.029)

Income unknown 0.791*** 0.562*** -0.505*** -0.700***
(0.034) (0.028) (0.046) (0.036)

Pregnant -0.377*** -0.408***
(0.057) (0.084)

* p < 0.1; ** p < 0.05; *** p < 0.01
1 Ordered logit model; 2 Logit model

Population, year, and state coefficients are not displayed in the table.
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Table 7: Regressions on variables Limited activity, Poor health, and Days of illness

1Limited Activity 2Poor Health 2Days of Illness
Women Men Women Men Women Men

County has law enforced -0.083** -0.013 -0.047** 0.011 -0.012 -0.001
(0.041) (0.034) (0.024) (0.027) (0.020) (0.027)

County has law -0.129* -0.091 -0.046 -0.071*** -0.030 -0.066**
(0.074) (0.068) (0.041) (0.024) (0.027) (0.031)

Age / 10 0.249*** 0.311*** 0.095*** 0.122*** 0.098*** 0.139***
(0.013) (0.011) (0.007) (0.007) (0.008) (0.005)

Age (/10) squared -0.085*** -0.069*** -0.031*** -0.036*** -0.039*** -0.037***
(0.006) (0.006) (0.004) (0.004) (0.003) (0.004)

Black race -0.415*** -0.235*** -0.007 0.002 -0.031 -0.033
(0.033) (0.078) (0.033) (0.049) (0.026) (0.044)

Other minority 0.063 -0.069 0.153*** 0.155*** 0.067** 0.101**
(0.061) (0.067) (0.042) (0.041) (0.030) (0.040)

Hispanic ethnicity -0.569*** -0.462*** -0.082* -0.020 -0.009 -0.003
(0.050) (0.073) (0.042) (0.044) (0.029) (0.029)

Married -0.295*** -0.274*** -0.024 -0.022 -0.037*** -0.057***
(0.032) (0.021) (0.018) (0.018) (0.011) (0.015)

Less than High School -0.120** -0.062 0.298*** 0.355*** 0.278*** 0.290***
(0.059) (0.060) (0.028) (0.035) (0.024) (0.030)

High school graduate -0.045 0.138*** 0.255*** 0.332*** 0.198*** 0.277***
(0.031) (0.028) (0.020) (0.026) (0.021) (0.019)

SomeCollege 0.193*** 0.348*** 0.227*** 0.292*** 0.202*** 0.231***
(0.020) (0.026) (0.017) (0.023) (0.015) (0.020)

Income < 15, 000 1.163*** 1.475*** 0.577*** 0.648*** 0.553*** 0.617***
(0.082) (0.049) (0.029) (0.033) (0.032) (0.031)

Income 15, 000− 25, 000 0.693*** 0.883*** 0.422*** 0.470*** 0.409*** 0.439***
(0.051) (0.052) (0.023) (0.030) (0.023) (0.023)

Income 25, 000− 35, 000 0.330*** 0.464*** 0.311*** 0.304*** 0.292*** 0.264***
(0.048) (0.045) (0.025) (0.033) (0.022) (0.030)

Income 35, 000− 50, 000 0.218*** 0.341*** 0.137*** 0.276*** 0.168*** 0.213***
(0.041) (0.032) (0.035) (0.035) (0.026) (0.025)

Income 50, 000− 75, 000 0.166*** 0.218*** 0.101*** 0.158*** 0.092*** 0.145***
(0.034) (0.028) (0.029) (0.035) (0.022) (0.031)

Income unknown 0.466*** 0.494*** 0.456*** 0.461*** 0.396*** 0.389***
(0.048) (0.036) (0.027) (0.038) (0.026) (0.033)

Pregnant 0.126 0.069 0.100*
(0.100) (0.080) (0.057)

* p < 0.1; ** p < 0.05; *** p < 0.01
1 Logit model; 2 Poisson model

Population, year, and state coefficients are not displayed in the table.
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Figures

Figure 1: Eastern US geography of calorie-labeling laws
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Figure 2: Western US geography of calorie-labeling laws
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